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IntroductionIntroduction
Collision plays a crucial role in tokamak edge plasmas. Across a separatrix,  the
plasma collision frequency (ν*) varies from <0.1 in the core (weakly collisional
regime) to >10 in the edge (collisional fluid regime). At a H-mode pedestal, the
ratio between particle mean free path and connection length is around unity.

DIII-D Edge Barrier 

    
l

mfp
= l

c

Orbit width

Collision frequency ν* across separatrix 

Edge kinetic simulations must be able to capture the collisional effects accurately
and bridge the different collisional regimes.
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TEMPESTTEMPEST
TEMPEST is a 5 dimensional (3D+2V) gyrokinetic continuum code,

currently being developed at LLNL, for studying the boundary plasma over a
region extending from inside the H-mode pedestal across the separatrix to the
divertor plates (find more details in the previous and next posters).

 TEMPEST solves gyro-kinetic equations for full distribution function F, and
uses gyro-kinetic Poisson equation for self-consistent electric potential. The
usual radial, poloidal and toroidal coordinates are (ψ,θ, ζ). In velocity space, the
so-called the constants-of-motion coordinates are chosen, namely,  energy (E)
and magnetic moment µ.  So F = F(ψ,θ, ζ, Ε, µ ). 

In the collisionless limit, E and µ remain constant along particle orbits. The
choice of (E, µ) thus enables an accurate and efficient algorithm for spatial
advections, e.g. parallel streaming and radial drift, because it automatically
avoids numerical diffusion in velocity space.

For collisional cases, a Fokker-Planck collision (FPC) operator is needed.

What is the velocity coordinates used in FPC ?
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FPC in (V-FPC in (V-θ) θ) coordinatescoordinates
Collisions are ubiquitous, and FPC is widely used in many fields of plasma

physics. Most of the existing FPCs, however, aimed at simulating spatially
homogeneous plasmas, e.g.[1].  Therefore, a spherical coodinates (v, θ, φ), with
assumed azimuthal symmetry, is used following Rosenbluth et al (1957).

 With Legendre polynomial expansion in pitch angle (cosθ) for F and the so
called Rosenbluth potentials,  Cαβ can be obtained by solving a system of second
order ODEs.  The solution is fast and easy.

 The development of fully nonlinear FPC in (V-θ) coordinates started around
mid 80’s,  and it has been successfully applied in studying mirror machine
confinement, RF heating, neutral beam injection, and so on [1].

 No need to reinvent the wheel. Why not just use the existing one ?

[1] J. Killeen, G.D. Kerbel, M.G. McCoy, A.A.Mirin,, Computational methods for kinetic models of
magnetically confined plasmas. Springer Series in Compuational Physics.(1986).
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First Attempt: interpolationFirst Attempt: interpolation

1) Interpolating F from (E, µ) to a (v, θ) grid.
2) Compute Rosenbluth potentials and the

diffusion coefficients.
3) Compute Cαβ(F,F) itself in (v, θ).
4)  Interpolating Cαβ(F,F) back to (E, µ ) grid

1) Difficult to do accurate interpolation between
the two meshes shown here, particularly for
coarse grids.

2) Despite the fact that FPC in (v, θ) space
conserves the number of particles, the particle
conservation is lost during the interpolation,.

3) For energy and momentum, the conservation
property are worse .
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Approach:

But this proves to be problematic:
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  FPC in (E-FPC in (E-µ) µ) coordinatescoordinates
Goal: improve conservation properties of FPC in (E, µ)

–Interpolate only the diffusion coefficients (slow varying) from (v,θ).

–But do conservative flux difference in (E,µ) space directly with  finite
volume approach.
–Requires treatment of cut cells at turning point boundary.

cut cells, cell -merging to
avoid small cell problem!

Finite volume is inherently 
Conservative!
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  VV||||--µµ coordinates coordinates

1. v|| and µ are essential
quantities for gyro-kinetic
description.

2. v|| -µ  has a constant
Jacobian.

3. avoid branch-cut problem
at v|| = o boundary  when
E is used.

4. no numerical interpolation
is needed.

! 

v|| = 2(E "µB " Z#) /m

Transformed mesh from the previous page

For numerical implementation, we further transform (analytically) the
energy coordinate E into parallel velocity via

     so that for each cell in (E, µ) space, there are two corresponding cells in
v|| -µ space (for v|| >0 and v|| <0 ).

Advantages :
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 Nonlinear Formulation Nonlinear Formulation
Ignoring the gyro-phase, the divergence form of FPC in v|| and µ  is

Where the fluxes are 

and the diffusion coefficients are given by

The Trubnikov-Rosenbluth potentials (g, h) satisfy:

(1)

(2)

(3)

(4)
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 Linearization of FPC Linearization of FPC

and the equation (4) can be solved as :

If the collisions between the test particles and the background plasma is more important
than the collisions among the test particle themselves, the full FPC can be linearized, as if
the distribution function for the field particles is known, and often times, assumed to be
Maxwellian. In such cases,  the equation (3) becomes:

Results presented in this poster are 
based on linear FPC calculations.
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Non-Linear CoefficientsNon-Linear Coefficients

1)Interpolate F from (E,µ) to a (v,θ) grid using 4th

order reconstruction technique
2)Compute Rosenbluth potentials and diffusion

coefficients in (v, θ)
3)Interpolate NonLinear coefficients back to (v||,

µ ) grid
4)Compute conservative difference operator using

coefficients for (v||, µ) reconstructed fluxes

New Approach:
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Finite volume schemeFinite volume scheme
Unlike finite difference method, which uses point-wise function values, finite volume
scheme solves the cell-integrated equation.

and the quantity that is being updated is the cell-averaged function value
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A reconstruction scheme is needed for getting
point-wise values for computing edge fluxes.

By construction, finite volume scheme
conserves overall particle density.

An example:  improvement made
by cutting cells and finite volume
approach for density moment

Spurious density variation 
due to B field change
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Initial condition
A Maxwellian distribution function with unit mean temperature (Tα=1) in
(E, µ) space used as an initial condition for linear FPC calculation:
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Thermal Equilibration
Time history of total energy for test particles during thermal equilibration.

Runing parameters:
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Collisional heating, Tβ = 1.5  

Collisional cooling, Tβ = 0.5  

Initial Tα = 1.0  

Theory
Computation
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Relaxation Time
The initial rate of energy change in thermal equilibration is described by
relaxation time (Spitzer(1940)).
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Theory assumes both distribution 
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Distribution functions
The final distribution functions for the test particles after thermal
equilibration is reached.

Heating, Tα = 1.5 @  t = t Cooling, Tα = 0.5 @ t = t

Compare the initial distribution on page 11.

8 8
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Density and Momentum

Density

Momentum

During the thermal equilibration, the particle density is exactly conserved.
The momentum remains to be zero (initial value) throughout.
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Drifting Maxwellian Test
Non-Linear Self Collision Annihilation
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Drifting Maxwellian Test
Non-Linear Self Collision Annihilation
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Minimum B Reconstruction
stable
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Maximum B Reconstruction
can exhibit feedback instability

n=0

n=100

n=200
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Algorithmic instability begins at particle turning
points, at high E, and at high B/B0
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Non-Maxwellian I.C.
The initial non-zero mean momentum of the test particles decays to zero
through the collision  with the field particles.
But, since the  FPC is linear, the test particles do not relax into a Maxwellian!
Only a nonlinear FPC, accounting for the particle’s self-collision, can lead that.
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SummarySummary
We have formulated and implemented a nonlinear Fokker-Planck collision
operator in constants-of-motion velocity coordinates, namely, the energy E and
magnetic moment µ.
The turning point boundary (v||=0) in (E, µ)  space is carefully treated with  a
cut cell algorithm. The resulting cells (both cut and uncut) are then mapped
directly into (v|| , µ) space for numerical implementation. This obviates the need
of numerical interpolation between coordinates, which is typically inaccurate and
non-conservative.
In (v|| , µ) space,  a high order finite volume approach is developted to ensure
complete particle conservation.  A linear collision operator based on this
methodology has been applied to the problems of thermal equilibration, and the
computation results show quantitative agreement with theory.
A fully nonlinear operator has been developed for TEMPEST based on a this
approach using the Rosenbluth potentials computed in an adaptation of FPPAC
(CQL) and the 4th order cutcell reconstruction algorithm.  Early results show
excellent momentum conservation for selectively chosen meshes.
Stay tuned.


